
gbsIII_docs.txt 9/9/2005

==
UCAWA GBS-IV SCRIPTING README

==
TABLE OF CONTENTS

1.1 SCRIPTING CONCEPTS
1.2 RACE AND CASTE DISCUSSION
1.3 THE GBS PARSER
1.4 LAYOUT AND SYNTAX
1.5 OBJECT IDENTIFIERS
1.6 LOGICAL LAYOUT & ORGANIZATION
1.7 GAME SYSTEM FILES
1.8 CREATING A MISCON DESCRIPTION FILE
1.9 FILENAME CONVENTIONS
2.0 GBS FILE TYPES EXPLAINED
2.1 PLANNING AND CREATING SCRIPTS
2.2 EASY STEPS FOR CREATING/PLAYING A MISSION SCRIPT
2.3 DISTRIBUTING SCRIPTS
2.4 SCRIPT DEVELOPMENT TIPS
2.5 THE SCRIPT AND OBJECT PARSER
2.6 UNIVERSAL TIME FORMAT
3.0 SCRIPTING BLOCKS - OVERVIEW
3.1 SCRIPTING BLOCKS - [ACM]
3.2 SCRIPTING BLOCKS - [DYNAMIC]
3.3 SCRIPTING BLOCKS - [AI]
3.4 SCRIPTING BLOCKS - [EVENT]
3.5 SCRIPTING BLOCKS - [SETS]
3.6 SCRIPTING BLOCKS - [MACRO]
3.7 SCRIPTING BLOCKS - [REGION]
3.8 CREATING A WING OF UNITS
4.0 FREQUENTLY ASKED QUESTIONS
4.1 TOOLS - PTESTUDIO SCENE VISUALIZER
4.2 TOOLS - BCSTUDIO MODEL VIEWER

1.1 SCRIPTING CONCEPTS

Writing a mission script using the Game Builder System is a very simple
process once you know what you are doing. Things to bear in mind are:

(a) know the world layout. The only way you are going to get a clear
understanding is to print out the maps of the galactic regions. You will
also need to print out the navigation links because you will need these
in
order to reference objects starting points in the region

(b) know the alien nation relationships. For this, you would need to
read
the manual. A lack of understanding in this area can and will lead to
scripts that are illogical and which will fall through. For instance,
the
Terrans are hostile toward the Gammulans especially the 'military'
castes.
So if you script two ships of this race/caste in the same region,
regardless of what your script does, a combat situation will ensue (c)
you
also need to print out the list of objects (stations, ships etc), the
trading database, the medals distribution etc.

Using the GBS, you can create single missions or a collection of
missions
making up a scenario. You can also create scenarios with branching or
linear storylines. There is no limit to the number of missions that you

1

gbsIII_docs.txt 9/9/2005

can
create nor the number of missions that a scenario can contain. The
longer
the script, the longer it will take to parse and interpret.

You also need to think logically. This is not your everyday run of the
mill
system. The GBS allows you to do very powerful things within the game
world. You can alter the world itself (which is not covered or allowed
in
this 'lite' version of the GBS), the objects in it etc. There is no GUI
here. You will be using a text editor to script the mission and then use
a
tool to parse and play it.

All objects in the game are either DYNAMIC or STATIC. The former are
objects that can move, make decisions, respond to external AI
instructions
etc. Examples would be a starstation or ship. These are called 'actors'.
The latter are objects that cannot move nor respond to external AI
instructions. Examples would be planets or jump anomalies.

1.2 RACE AND CASTE DISCUSSION

There are twelve 'known' races in the game world and 22 castes (see
the game appendix file).

The AI engines directly affect the race and caste relations. Though the
world is initialized with a default alliance matrix (see OBJECTS.TXT),
you
can override this in your script. However, you only have a high level
access and *not* a low level one. For instance, though the Gammulans are
hostile to the Terrans by default, using a script command
(MOD_ALLIANCE),
you can make them friendly. They can organize cookouts or go to
powerball
games together. However, a Terran raider is going to attack a Gammulan
diplomat regardless of what the race relation is, leaving it up to the
decision makers to sort it out. The castes themselves interact with each
other based on their internal AI goals. A TERRAN MILITARY ship is going
to
ignore a GAMMULAN DIPLOMAT but will attack a GAMMULAN MILITARY ship. A
TERRAN EARTHCOM ship is going to attack a TERRAN INSURGENT ship. A
TERRAN
POLICE unit is going to attack a GAMMULAN RAIDER regardless of the race
relationship. It gets more complex at lower levels but we don't need to
bother with that right now. These relationships are what make it
possible
for the world to continue operating regardless of what you are doing. A
station that is scheduled to launch a patrol (or invasion) into a
hostile
region only needs to send the units (actors) to the region and their
internal AI will take over. No additional work is involved. Even when
scripting, to create a skirmish, all you have to do is introduce a unit
to
the region and that's it. You can script a GAMMULAN MILITARY ship to
appear
in the Earth region and GALCOM HQ will immediately launch a fighter wing
to
take it out. If the ship is within range, it will also launch missiles
or
activate it's turret firing system. You don't have to send any script

2

gbsIII_docs.txt 9/9/2005

instructions to GALCOM HQ or the ship in question. If the ship is a
carrier, then it too will launch it's own fighters to engage the
fighters
launched at it. If a scripted ship lays mines in Earth region and GALCOM
HQ
detects the mines, it will launch a wing of fighters with MINESWEEP
order
to remove them.

An understanding of the race/caste relation is vital to the integrity of
the scripts. Using the powerful option of actually altering these
relations, you can alter and tip the balance of power at a galactic
scale.
You may for instance, via a campaign consisting of several scripted
missions and scenarios, create a diplomatic situation between one race
and
another, leading all the way up to outright hostility based on the
outcome
and resolution of the scripted missions. For instance you could script
an
ship to deliver an object to another ship somewhere. If the object is
not
delivered, you can then alter the relationship slightly between the two
races etc.

1.3 THE GBS PARSER

The scripting system is a high level interpreted language that is
executed
at runtime. The PREPARE parser takes the script,
parses it (like a language compiler such as C++), checks for errors and
produces a binary file that the interpreter built into the game engine,
uses at runtime. The parser has no knowledge of how illogical or
inconclusive your scripts are. It doesn't care either. So, just because
the
script parses OK, does not mean that all is well and good. You should be
able to read your script and tell if it's logical or not. Then, once its
in
the game, you have to pray that some AG actor is not going to render
your
script pointless (as previously discussed). During the parsing of a
script,
the parser will halt at any errors it finds and provide a line number
that
the error occured on.

All scripts must be created from the folder in which the parser resides.

The last line of EVERY script file MUST have the $ character. This is
used
to signal and end of file condition.

1.4 LAYOUT AND SYNTAX

When writing a script, use indentations as well as a combination of CAPS
and lowercase so that the logic jumps out at you. When nesting IF
blocks,
indent them so that, again, they are readable. Here is a script segment
that illustrates this. Notice the indentation and the use of CAPS and
lowercase syntax. As you become an expert (yeah, right), you will be
able
to look at a script block and immediately notice the logic and/or

3

gbsIII_docs.txt 9/9/2005

errors.

The parser is not case sensitive so 'START' is the same as 'start', 'IF'
is
the same as 'if' and so on. If you create a script that is hard to read,
you won't be able to make sense of it, nor will the person you are
sending
it off to.

Though the maximum line length is 128 characters, if you have a line of
script that exceeds the screen display, i.e., line 79, it will be hard
to
read and understand. All script commands MUST be on their own line.
There
is no line continuation.

SAMPLE SCRIPT EXCERPT:

[dynamic]
vesperon diplomat,,f3,mrt15.3dc,DIPLOMAT3
[ai]
.f3,100,100,100,100,100,100,0
start 120000 near canaanz^jmp-33 2000 jmp-32
stop
events 101
!startup

jump majorisz^wrm-23
broadcast "DIPLOMAT3 LAUNCHED"

!under_attack this
broadcast "We are under attack!"
reset_under_attack this

!destroyed this
say TO,"Vesperon diplomat3 has been destroyed"

!arrived majorisz
IF EXIST majoris_s THEN
broadcast "Executing docking approach to station Majoris"
dock majoris_s
ELSE
broadcast "Station Majoris not operational, returning to Eridani"
IF EXIST eridani THEN
dock eridani
ELSE
flee
ENDIF
ENDIF

!docked majoris_s
say CMO,"Vesperon diplomat3 has docked at station Majoris"

endevents

1.5 OBJECT IDENTIFIERS

Use descriptive names for all object identifiers. When you are writing a
script, avoid id abbreviations such as 'f3' used above unless you are an
expert and can keep track of this stuff without scrolling the page. If
you
are scripting multiple ships, then names like enemy_ship1,
friendly_ship2
are more descriptive than e1 and f1. The max id length is 128
characters.
If you are creating wings, you can then use friendly_wing1 etc.

NOTE: You *CANNOT* use duplicate identifier names in the same script,

4

gbsIII_docs.txt 9/9/2005

even
if you are breaking them up. Therefore, 'enemy1' can only be used once.
If
you have, for instance, two files that are joined together using
#include,
this rule also applies because all the files are parsed as one file.

1.6 LOGICAL LAYOUT & ORGANIZATION

Use comment lines # to separate scripted entities. This also improves
readability. When possible, include comments in areas where there is no
clear indication as to what is happening.

Augmented blocks such as [sets] and [event] should always be at the end
of
the file. This also improves readability.

If you are writing a campaign, break it up into smaller script files and
then use the #include directive to connect them. For instance, you may
have
a 20 mission scenario and you can break it into 4 files each with 5
missions and name them sensibly. In this example, we assume that the
'master' script is called BCIA0201.SCR and that each of the other files
each contain their own mission blocks.

NOTE: The #include directive MUST be on column 1 of the line!

You would have BCIA0100.SCR, TOD201.SCR, TOD202.SCR, TOD203.SCR and
from within BCIA0100.SCR (usually after the comment) you would include
the smaller files. You can use any filename convention you like.
The parser will first parse all the included files and then move into
the
current file and parse them. This also means that you can also #include
files at the END of the master file. This would be the case if the first
file, BCIA0100.SCR contains 5 missions and the subsequent files contain
5
each in sequence. Of course the master file doesn't have to contain any
scripts at all. It can simply contain the description of the scenario
script and lines which include the missions themselves.

#
The BCIA0100.SCR master file will include 3 other smaller script files
#
#include tod201.scr
#include tod202.scr
#include tod203.scr
#

As your scripts get larger, they will become more and more difficult to
read. By grouping object entities and blocks together, you will be able
to
read and understand them more clearly. In example1, all the objects are
identified at the beginning of the script. In example2, they are
identified
when and where needed. This probably won't make sense until you start
scripting four or more entities in a script.

e.g. #1

[dynamic]
vesperon diplomat,,f3,mrt15.3dc,DIPLOMAT3
vesperon diplomat,,f4,mrt15.3dc,DIPLOMAT4

5

gbsIII_docs.txt 9/9/2005

[ai]
.f3,100,100,100,100,100,100,0
start near canaanz^jmp-33 2000 jmp-32
stop
events
!startup

broadcast "DIPLOMAT3 LAUNCHED"
endevents
#
.f4,100,100,100,100,100,100,0
start near canaanz^jmp-33 5000 jmp-32
stop
events
!startup

broadcast "DIPLOMAT4 LAUNCHED"
endevents

e.g. #2

#
Vesperon diplomat is travelling to Majoris/Alpha Majora
where it will meet up with another Vesperon diplomat
#
[dynamic]
vesperon diplomat,,f3,mrt15.3dc,DIPLOMAT3
[ai]
.f3,100,100,100,100,100,100,0
start near canaanz^jmp-33 2000 jmp-32
stop
events
!startup

jump majorisz^wrm-23
broadcast "DIPLOMAT3 LAUNCHED"

!detect f4
broadcast "DIPLOMAT4 detected on radar!"

endevents
#
The ship will patrol Majoris until diplomat3 arrives
#
[dynamic]
vesperon diplomat,,f4,mrt15.3dc,DIPLOMAT4
[ai]
.f4,100,100,100,100,100,100,0
start near canaanz^jmp-33 5000 jmp-32
stop
events
!startup

jump majorisz^wrm-23
broadcast "DIPLOMAT4 LAUNCHED"

!arrived majorisz
patrol majorisz
broadcast "DIPLOMAT4 starting patrol pattern"

!detect f3
broadcast "Hey guys, about time!"

endevents
#

1.7 GAME SYSTEM FILES

All your master scripts MUST contain the system files that the world
needs
to run. You should ensure that the following block is in your master

6

gbsIII_docs.txt 9/9/2005

file
after the description. You do NOT need to put these in files that you
have
broken up into smaller parts. ONLY the master file needs this. See the
included script examples. In the example above, this block of text
would
only be in the main script file and not the smaller #included files. It
is preceeded by your scenario description and followed by your #include
directives if you are including other smaller script files (see above)

e.g.

[dynamic]
#include glob_dyn.scr
#
[ai]
#include glob_ai.scr
#include glob_ag.scr

1.8 CREATING A MISCON DESCRIPTION FILE

MISCON description files are also ascii text files that have a .DES
extension. These are used to describe the basic premise of the scenario
created. This is the file that is displayed when the user selects a
scenario in MISCON.

Each line should be no more than 80 characters wide and each page should
not exceed 30 lines or the display will overflow into the graphics area.

The last line of the file should be a carriage return or parsing will
fail.

Like .MIS files, the .DES description file must be copied over to the
SCRIPTS folder where it can be accessed by MISCON at runtime.

1.9 FILENAME CONVENTIONS

The GBS adheres to strict scenario naming conventions. Whatever you do,
do NOT use the same file naming convention used by the game.

When naming your scripts, do NOT use the naming convention used by game
scripts!! e.g. BCIA0101 to BCIA0125 are a game scripts, so you should
start
your numbering from BCIA0201 to BCIA0299, BCIA0301 to BCIA0399 etc. This
applies to all script types (ROAM, ACM, IA, TA) but each have their own
naming
conventions.

2.0 GBS FILE TYPES EXPLAINED

You will be working with the following file types, so I may as well
explain
them briefly.

1. SCR / MIS

When you parse a source .SCR script file, the resulting file is the
binary
version with a .MIS extension. This is the file that the game runs.

2. DES

7

gbsIII_docs.txt 9/9/2005

When you create a .DES description file, it is displayed, as is, when
MISCON starts. The system checks for scenarios in the resource files
and the SCRIPTS sub-folder and will display those that it finds. It
will
use the most recent file if a file exists in that folder and in the
resource files. If you create a mission with no description file, it
will not show up in MISCON and therefore cannot be played.

3. TXT / DAT

The game has multi-language support built in but was never used. The
parser
was also updated to support this system. Therefore, when you write a
script, all strings scripted using the SAY and BROADCAST commands as
well
as those within the [ACM] block, are stored in a .TXT text file. Each
time
you build a script, you should run the parser with the 'phrases'
parameter.
This creates a .TXT file and a .DAT file. The former contains the
actual
strings and the latter contains the parsed version that the
interpreter uses.

4. GLOB_AG.SCR, GLOB_AI.SCR, GLOB_DYN.SCR, IA_AG.SCR, IA_AI.SCR,
IA_DYN.SCR

OBJDEFS.SCR, OBJCLASS.SCR, OBJCLASS.LST, STD_ID.HPP, TEMPLATE.HPP,
WORLD.SCR

There are several system files that you MUST not be altered in any
shape
or form. These files are used by the parser to set up internal
variables. If these files are altered, not only will your play world
be
invalidated, the parser won't even parse your script. You have been
warned.

ONLY modify the OBJDEFS.SCR and OBJCLASS.SCR files if you know
what you are doing. And even then, you will NOT be able to run the
scenarios
which shipped with the game. You will only be able to run your own
scenarios
which make use of these modified files.

2.1 PLANNING AND CREATING SCRIPTS

Unless you are just experimenting or modifying the sample script to your
heart's content, there will come a time when you are going to lose it
and
attempt to create the best mission script you have ever seen. I sure
hope
you have a lot of hair left on your head. Start small, think small and
progress. The GBS is a very powerful system and you are going to get
carried away long before you even get your first script to run. Be
patient.

To design, write and run a good script (no script is perfect), you have
to

1. Think about what you want to achieve in the script.

2. Look at the maps and figure out where it is going to take place.

8

gbsIII_docs.txt 9/9/2005

3. Make a note of any hostile forces operating in the regions that the
script takes place in. Such as the Insurgent station in Sygan.

4. Make a note of the current race/caste relations. Make a note of what
kind of objects you are going to be using in the script.

5. Think up a descriptive short scenario briefing for display in MISCON
where you get to choose the script you are about to run.

6. Think up short and descriptive mission orders that are going to be
displayed in the COMMLINK computer when the particular scenario
starts. Remember that the if you are creating an ACM scenario,
whatever
you have the .DES file, should also be in the [ACM] block because
when
the gamer does to COMMLINK, it is the [ACM] block description that
is
displayed, NOT the one in the .DES file (that one is only displayed
in MISCON).

2.2 EASY STEPS FOR CREATING/PLAYING A MISSION SCRIPT

1. Create the mission script in text editor and give it a name based on
the convention already discussed.

2. Create the MISCON description file and give it a name based on the
convention already discussed.

3. Parse the script using PREPARE in the form, 'PREPARE <filename.scr>'

4. Generate the strings file i.e 'PREPARE PHRASES <filename.scr>'

5. Copy the parsed script file, the description file and the language
data file, to the SCRIPTS sub-folder in your game runtime
environment.

6. Run the game, select the scenario from the list in MISCON and play
it!

Once you start the game, the description file, will be displayed in
MISCON.
Select it and launch to run your script. You should then proceed to
the
area where your script takes place and watch it in action.

2.3 DISTRIBUTING SCRIPTS

To share scripts with your friends, send them the entire script set. A
script set consists of the .SCR, .DAT, .TXT and .DES files. All they
have
to do is put the files in their SCRIPTS folder and run the game. Of
course,
since they have the source (.SCR file), they can make any modifications
they wish, to the script and build their own variance.

WARNING: There WILL be set name conflicts for instance if you send
someone
a BCIA0201 set and they already have their own or one from another
source.
The user will simply have to rename all the files to a vacant 'slot' on
his

9

gbsIII_docs.txt 9/9/2005

system. So for instance if you send them the BCIA0201 set and they
already
have one, but have the BCIA0501 'slot' free, all they would have to do
is
rename all the files. For example 'ren BCIA0200*.* BCIA0501*.*' will do
the
trick. Of course they can overwrite any script set that they no longer
wish
to keep.

Foreign language speakers can edit the .DES and .TXT files to match
their
language. All text displayed in MISCON and COMMLINK (generated by the
script) will be in the foreign language. Once the .TXT file is
translated
from English to, say, German, the script .SCR source must then be parsed
in
order to generate a German version of the .DAT file.

Finally, when writing scripts, you MUST include a comment block (you can
cut and paste the excerpt below) at the top of the main file. This block
will contain a brief description about the script. For more information
about what its about, they can always read the .DES file.

#
SCRIPT Script file name, ie BCIA0201
NAME Author's name
list multiple authors on separate lines
EMAIL email address
WEB Website URL
DATE Date of creation
NEW SOUNDS Y | N (this will always be N unless you have new
soundfx)
VERSION The version of the PREPARE parser used. This is
displayed
when the parser starts.
#
SCENARIO Brief description of the scenario.
Use multiple lines if necessary.
#

2.4 SCRIPT DEVELOPMENT TIPS

Since you will be working from a console MS-DOS box, you can make use of
multi-tasking and reduce stress. You cannot write five lines of a two
thousand line scenario and expect to run it right away. Unless of course
you are testing. You have to finish the script, parse it, run the game
and then note any inconsistencies. If the script parses, then it will
run,
all you will be looking for are flaws in the logic (as previously)
discussed.

You should open your text editor as normal and create the script from
there. Open up another windowed DOS session (with a minimum of 8MB of
memory available in the shortcut properties) and log to the folder
containing the parser and your script. Once you have finished writing
the
script, even if it is five lines, you simply minimize the editor and run
the parser from the DOS window. You will then be able to catch any
errors,
hit the enter key to return to the DOS prompt (allowing PREPARE to close
the file), make a note of the line and error type, then switch to the

10

gbsIII_docs.txt 9/9/2005

editor and correct the error.

2.5 THE SCRIPT AND OBJECT PARSER

The PREPARE parser is used to parse an ascii script file into a format
that
can be read by the interpreter. It can also parse .3D objects and jam
relevant AI instructions into them for use by the game engine.

When a script is parsed, each block is access and parsed one at a time.
If
an #include directive is encountered, the file is loaded and parsed.
Processing then continues in the original file. Prepare does multi-
passes
in order to resolve forward references. This means that an object can be
scripted to reference an object that is probably not even in scope at
the
time of interpretation.

Blocks can be arranged in any order but for clarity, you must follow the
convention and be consistent. If you script the [ai] block for an actor
and then it is followed by instructions that are only valid in a
[dynamic]
block, an error will occur. You must ensure that your script line is in
context with the block being parsed. This is why, in the previous
section,
you were advised to let each actor have it's own [dynamic] and [ai]
block.
The [sets] and [event] blocks should be last in the file. If you put
event
identifiers in a [sets] block and vice versa, an error will occur.

PREPARE expects all files to be terminated with the $ character. This
tells
it that an end of file has been reached.

All blocks MUST be on column 1 of the line. This also applies to the
files
included with the #include directive.

When an error is encountered, PREPARE will terminate with an explanation
and possibly a line number containing the error. If the line is correct
then you must check that the command is in context with the relevant
block.
A typical mistake would be to be putting [ai] block commands in
[dynamic]
blocks etc.

2.6 UNIVERSAL TIME FORMAT

There is a universal time format that can be used in [acm] and [event]
blocks.

<minutes> eg 10 = 10 minutes, or
<hours>:<minutes> eg 1:30 = 1 hour and 30 mins = 90 minutes, or
<days>:<hours>:<minutes> eg 1:4:10 = 1 day 4 hours 10 mins = 1690
minutes

The parser will not allow certain dubious times, for example

180 minutes (3 hours) can be specified as follows:

11

gbsIII_docs.txt 9/9/2005

180 <--- ok
0:0:180 <--- ok
3:0 <--- ok
0:3:0 <--- ok

2:60 <--- invalid
1:120 <--- invalid

Similar restrictions apply to hours (must be < 24) if days are
specified.

For convenience, days can be specified as:

4:: <-- 4 days

Times of zero are not allowed.

3.0 SCRIPTING BLOCKS - OVERVIEW

Each game script can contain definitions for objects, regions and even
AI processing information for those objects and regions. A script is
divided into separate blocks which determine how each actor/entity is
handled.

There are system and mission scripts with the only difference being that
mission scripts actually contain orders and goals for the entities
created.

Mission scripts can include system scripts which contain definitions for
the game universe itself.

Each script command MUST be on its own line. There is NO continuation
character for script lines. So if you have word wrap turned on in your
editor and it causes a lengthy command, ie "broadcast", to wrap to the
second line, the PREPARE parser will choke. In general, you should
always
have wordwrap turned OFF in your editor but remember to adhere to the
maximum line limit for script commands and the [ACM] scenario
description
block (see below).

Script blocks in GBS are :

[acm] - ACM orders and definitions block
[dynamic] - definitions for dynamic entities
[ai] - goal related instructions for defined entities
[event] - scripted events identifiers
[sets] - defines sets of entities
[macro] - macro definitions for entities and commands

SYNTAX LEGEND

< > indicates a mandatory field
[] indicates an optional field
< >,< >, indicates a collection of mandatory fields
[< >,< >] indicates a collection of optional fields

3.1 SCRIPTING BLOCKS - [ACM]

This is usually the first block in a script. It defines the scenario
region

12

gbsIII_docs.txt 9/9/2005

and also displays the mission instruction to the player. You can have as
many [ACM] blocks as you like with varying duration. Each block will
define
a new mission.

The maximum character length for the ACM block is 65. So, you should
turn
on wordwrap at line 64 and end all lines with hard breaks. There is no
word
wrapping when this block is displayed in COMMLINK at runtime. If you
fail
to do this, then the mission description displayed in COMMLINK will not
be
formatted properly.

SYNTAX

[acm]
<orders description>

:<acm_id>,<theatre>,<setup_event>,<begin_event>,<resolve_event>,<acm_tic
k>
<time1>,<time2>,<time3>

<orders description>

Text describing the ACM scenario. Must not exceed 65 characters per
line.
There is no restriction on the number of lines because this is displayed
in
COMMLINK. You are advised to keep it short as possible but enough to
clearly explain the goals of the mission. You CANNOT have a blank line
within this field. If you want to insert a blank line in order to make
the
description readable, put a period (.) in column 1 of the line.

The next line, preceed by a colon character, is the ACM definition line
which consists of 9 parameters. ALL parameters MUST be provided and the
entire definition MUST be on one line. So, if you have word-wrap turned
on,
turn it off or this line will wrap at the predefined column setting for
your editor.

<acm_id>

This is an identifier for the current mission within the scenario. It
can
be any positive non-zero value. Example, mission 1 in TOD 1 containing
several missions can be identified as 101, 102, 103...etc

This id is also used in the events/endevents block in order to restrict
processing for the particular ACM scenario only. If you fail to use this
id, then ALL events will be fired within ALL [acm] blocks instead of
just
the current one.

The ACM id can be used in an IF/IFNOT statement as well in order to test
if
the condition is true/false for the current ACM scenario.

IF ACM 101 <command>

13

gbsIII_docs.txt 9/9/2005

meaning: if the current ACM scenario is 101 do <command>

<theatre>

is where the mission scenario starts, it must be a valid region name.
This
is where the player has to go for the ACM events (see below) to be
fired.

<events>

setup_event : signalled just before the time1 timer is started
begin_event : signalled just before the time2 timer is started
resolve_event : signalled after time2 has expired

These are 'one off' events equivalent to user defined events specified
in
an [event] block. They can be signalled using the signal keyword just
like
other user defined events if necessary. An error is issued if the event
names are already defined or are keywords. These can be any string name
you
choose but try to use short and descriptive event names that are easy to
remember.

You can use these events anywhere in your script within an
events/endevents
block.

The 'setup_event' is rarely used.

In principle, you ALWAYS want to use the 'begin_event' in your scripts
so
that all actors pertaining to this scenario are activated when the
CURRENT
scenario starts.

The 'resolve_event' is very important because it signals the end of the
scenario. You can use it to determine what happens when the scenario is
finished. You can then do normal cleanup using this event. An example
would
be to send an RTB order to all surviving ships etc.

<acm_tick>

is an event called every 5 seconds & used to terminate/control scenario
using above conditional statements. A 'tick event' may be placed in any
object, but the usual use would be to place the event in a persistent
object which lasts for the duration of the ACM scenario. You can also
use
this tick in an event/endevents block for checking events every 5
seconds.

EVENT TIMERS

<time1>:The max arrival time, the time allowed for the player to reach
the theatre before the scenario starts, if the player
doesn't get there in time the scenario will begin without him
after
this time has elapsed. If the player reaches the theatre in this
time, the scenario will begin as soon as he arrives.

14

gbsIII_docs.txt 9/9/2005

<time2>:Scenario time, the time the player is allowed to resolve the
scenario before it is resolved for him. The scenario will always
take this amount of time even if the player has suceeded in
destroying the bad guys etc. The player cannot request new
orders
until this time has elapsed.

<time3>:Scenario interval time, this is the max time the player can lick
his wounds between scenarios before he will get new orders from
Galcomhq. During this time, the player can "request new orders"
This terminates this interval delay and starts the next
scenario.

The 'time2' variable is vital because, in conjunction with the
'resolve_event', it determines when the scenario ends. Sometimes, you
won't
know how long a scenario will take. You should estimate how long you
think
it would take and then add 15 minutes to this time. Even if there is
excess
time left over and the player is idle, you can always use an 'event' to
trigger the next mission using the 'resolve_event' event timer. For
example, if you estimated that the player would take 15 minutes to
destroy
a target and he finishes in 5, you can use an event trigger (perhaps in
the
object he is sent to destroy) and a combination of the 'acm_next'
command
to start the next mission without having him wait around for 10 minutes
plus whatever 'time3' is set to.

NOTE: * Normally, you would use minutes in an [acm] block for
simplicity.

* Refer to SECTION 2.6 for notes on the universal time format

USING COMMENTS

Comment lines (lines starting with #) are skipped. Orders text lines
cannot
be blank since these are eaten by the parser, to specify a blank line
(for
spacing the orders neatly), place a . (period) at the start of the line.
The entire line will be replaced by a blank line ("").

Multiple acm blocks are allowed, but for safety, each must be a complete
mission scenario (orders text and :params) otherwise an "acm definition
is
incomplete" error is issued. This message will appear if there is
spurious
text after a :params line.

ACM TRIGGERED ALERT CONDITIONS

Condition is YELLOW until player arrives at theatre or timeout
Condition is RED while scenario is in progress

NOTE: The internal low level alert condition, i.e, the CAS and SAS
alerts,
takes precedence over the ACM alert condition.

Fresh orders can be requested by the player using ALT-CTRL-C if this
enabled with the 'acm_script_enable' command.

15

gbsIII_docs.txt 9/9/2005

In debug mode, current ACM number,state and date of next event is
displayed above the SCRIPT line. ACM state is

0 = No ACM, (only when no ACM script)
1 = ARRIVAL (until player arrives)
2 = INPROGRESS (duration of scenario)
3 = RESOLVED (until new orders requested/received)

The first mission is issued one minute after the game starts for the
first
time.

EXAMPLE

[acm]
CAMPAIGN.................TEST TOD1
THEATRE OF OPS...........EARTH/SOL
MISSION CLASS............LONG RANGE TOW/DELIVER TEST
.
A diplomat ship is starting in the Canaan region.
.
You have 5 mins to get to the area before the scenario starts.
This scenario will run for 30 mins before it is auto-resolved.
You have 15 mins downtime to the next mission.
.
:101,earthz,setup_tod1,begin_tod1,resolve_tod1,tod1tick,5,30,15
#

3.2 SCRIPTING BLOCKS - [DYNAMIC]

SYNTAX:

[dynamic]
<race> <caste>,[<skill>],<id>,<model or class>,[<vdd name>],[<alias>]

<race>

The race is mandatory and can be any valid race, ie

TERRAN, SYRION, KANDORIAN, EMPIRIAN, VESPERON, DROIDAN, FALKERIE,
MANDORIAN, GAMMULAN, ZELON, VALKERIE, CREDIAN

The race can also be:

MIXED meaning it is not "owned" exclusively by a single government, or
that it has no ownership (eg a comet) It is neutral.

ALLY meaning that the object is any race that is allied to the terrans
picked at random when the object is created

ENEMY meaning that the object is any race that is an enemy of the
terrans
picked at random when the object is created

NEUTRAL meaning that the object is any race that is neutral to the
terrans picked at random when the object is created

ANYRACE meaning that the object can be any race picked at random when
the
object is created.

16

gbsIII_docs.txt 9/9/2005

<caste>

The caste is mandatory and can be any of the following :

Aggressive Castes:

EARTHCOM, POLICE, RAIDER, CRIMINAL, INSURGENT ASSASSIN, MILITARY,
MERCENARY, MARINE (Note: these are all aggressive castes)

Harmless Castes:

WORKER, SENGINEER, FENGINEER, PARAMEDIC, SCIENTIST, HACKER, DIPLOMAT,
TOURIST, EXPLORER, JOURNALIST, COLONIST, TRADER, COMMERCIAL

HARMLESS : Any harmless caste picked at random

AGGRESSIVE: Any aggressive caste picked at random

ANYCASTE : Any caste picked at random from HARMLESS and AGGRESSIVE
types

[<skill>] : The skill is optional and used to define the skill level
of

the object. If not specified, a random skill level is
generated which is made up of several skill related
attributes. Though this field is optional, use a comma
place
holder instead of a 1 to 5 value to indicate that you want
the interpreter to pick a random skill.

Valid skill levels are from 1 (low) to 5 (high)

SUPERACE : Highest
ACE :
VET :
CADET :
NOVICE : Lowest

<id> : This is mandatory. Each object in a script MUST have a
unique identifier which is used to reference it. This
identifier MUST be unique in the script it is defined
in
as well as in any other scripts that are linked to the
current script using the #include directive. For
instance,
you can't have 'ship1' in the current script as well as
in
a script that is linked to the current script. You can
however use this identifier in any other script set
that
is not linked to the current one.

<model|class> : This is mandatory and can be the .3D filename of any
valid object in the game or a class of object (advanced
users). ie BCRUZMK2.3D (object) or BATTLECRUISER_MK2
(class) can be used. See OBJCLASS.SCR file for a list
of
valid classes, and OBJDEFS.SCR for a list of models.

[<vdd name>] : This is optional and overrides the actual 'filename' of
the object being used. An object with a filename of
BCRUZMK2.3D will be listed as BCRUZMK2 in the VDD. To

17

gbsIII_docs.txt 9/9/2005

change it to something else, ie 'primary target' use
this
parameter.

[<alias>] : Optional name of unit. This overrides the VDD name.
There

should be NO spaces in this parameter. To include a
space
use the underscore character

EXAMPLE

[dynamic]
terran,military,,friend1,solnar.3d,primary_target

3.3 SCRIPTING BLOCKS - [AI]

The [ai] block contains AI processing commands for all entities within
the
script. Each entry within an [ai] block must reference an identifier in
the
[dynamic] block. All parameters are mandatory! The object's definition
determines its attributes when created.

SYNTAX

[ai]
.<id>,<shield>,<armor>,<engine>,<weapon>,<launch
bay>,<reactor>,<cloak_rating>
[FACE <id>]
START <parameters>
<nav action>
<nav action>
STOP
EVENTS [<acm_id>]
!<event id>
<command>

!<event id>
<command>

ENDEVENTS

The actions/orders which the object can perform must be nested within
and
EVENT and ENDEVENTS block. The EVENT syntax must also contain an
identifier
which references the scenario in which the event is triggered. You can
have
as many event ids and commands within the 'event block' as you like, as
long as they are logical and make sense.

Every event MUST be on a separate line and preceeded by the !
(exclamation
mark) character which MUST be on column 1 of the line.

You can place an event id anywhere within the EVENTS/ENDEVENTS block.
The
location within the block does not matter.

An <event id> can be any of the three defined in the [acm] block or a
user
defined event that you create.

18

gbsIII_docs.txt 9/9/2005

The <acm_id> is a numeric value which is defined in the ACM syntax line.

The events between EVENTS and ENDEVENTS are only processed if the
current ACM scenerio is equal to <acm_id>, otherwise they are all fired
when the scenario starts. If you don't provide an <acm_id>, then the
default value of 0 is used. This means that these events are processed
for
all acm scenarios.

When the block is processed by the interpreter, ALL the <commands>
defined
for an <!event> are fired at the same time and in order. There is no
pause.
Therefore if you the first command you give the 'jump' order and the
second
command is 'halt', then the object will jump to the region and then halt
when it gets there. Because all <commands> are processed, you can use
the
very powerful IF conditions within <!event> blocks to determine when a
command is fired.

WARNING: You MUST use an <acm_id> parameter when creating scripts that
span
several ACM missions in a single scenario. Failure to do this will
result
in script commands for the ENTIRE script to be fired at once. So for
instance if you have two scenarios with the 101 and 102 ACM identifier
(as
explained in the [acm] block above) and you fail to include these
identifiers for the events, once the script is started ALL the events
for
both missions will be fired at once. This is a sure fine way to create
unpredictable scripts. If you only have a single ACM mission, then you
can
safely omit this parameter.

BLOCK CONTINUATION

AI block continuations are also allowed. To continue scripting an object
(possibly in a different file) use the following syntax in any
[ai] block.

Example, I need to add new directives for 'objectA', which is defined
somewhere in the current script file or in another file that is INCLUDED
by
the current one using the #include directive. So I would simply create
new
events for this actor within another actor's block or by itself.

Lets assume that this block is the original definition for the object
(where it was first created) in the current or other script file.

[dynamic]
terran military,,objectA,lrt10,primary_target
#
[ai]
.objectA,100,100,100,100,100,100,0
FACE karl.bmp
start inactive near earthz^jmp-12 2000 jmp-11
cruise earthz^jmp-11
stop
events 101

19

gbsIII_docs.txt 9/9/2005

!begin_tod1
activate this

!reach earthz^jmp-11
broadcast "Arrived at Jump Point 11 in Earth region"

endevents

Now, lets assume that further down in the current script file or in
another
file that is linked to this one using the #include directive, that I
want
to create additional orders that this object can perform either during
the processing of the current ACM (id is 101) or when another is active,
I
would simply reference it by including its id in a new [ai] block (eg1)
or
in a block (eg2) already defined for another object. In which case, I
would
do the following.

e.g. #1

In this example (somewhere further along in the current or different
script
file) the continuation is in its OWN [ai] block. This is valid. You can
even insert it AFTER the [dynamic] block for objectA but that would be
BAD
scripting practice because it makes it harder to read and is confusing.
TIP: Always try to pair the [dynamic] and [ai] blocks for the entities
they
are created for.

[dynamic]
terran military,,objectB,generis.3d,secondary_target
[ai]
.objectB,100,100,100,100,100,100,0
start inactive near earthz^galcomhq 5000 jmp-11
stop
events 102
!begin_tod2
activate this
broadcast "Standing by"

endevents
#
[ai]
.objectA
events 102
!begin_tod2
rtb
broadcast "Returning to base"
endevents

e.g. #2

In this example, the continuation is within ANOTHER object's [ai] block.
This is perfectly valid because the [ai] block for objectB is 'in
scope'.
If there was another block, ie a [dynamic] block in scope (eg3), then I
would be forced to use the method in eg1 other the parser will flag it
as
an error.

You could even insert an [ai] block definition before the .objectA

20

gbsIII_docs.txt 9/9/2005

identifier on line 13 of the script (after the comment separator) and it
would be valid. This would be only to make it readable but it is valid.
Why? Because even though you have an [ai] block for objectB and the one
for
objectA comes after, 'an' [ai] block is in scope, making the operation
perfectly valid.

Also, as you can see from the examples that you do not need to provide
the
'AI definition flags' for objectA (when continuing) because you had
already
provided them when the object was first created in eg1. All you need is
the
id for objectA (the actor in question).

[dynamic]
terran military,,objectB,generis.3dc
[ai]
.objectB,100,100,100,100,100,100,0
start inactive near earthz^galcomhq 5000 jmp-11
stop
events 102
!begin_tod2
activate this
broadcast "Standing by"

endevents
#
.objectA
events 102
!begin_tod2
rtb
broadcast "Returning to base"
endevents

e.g. #3

This is an example of what NOT to do. If you use this method, the parser
will flag it as an error because the [dynamic] block for objectB is in
scope and therefore you MUST use the method in eg1 to continue the
orders
for objectA. To make this valid (but a BAD scripting practice), you
would
insert an [ai] block definition on line 3 of the script. This would put
the [ai] block for objectA and objectB in scope with no problems.

[dynamic]
terran military,,objectB,generis.3dc
.objectA
events 102
!begin_tod2
rtb
broadcast "Returning to base"
endevents
#
[ai]
.objectB,100,100,100,100,100,100,0
start inactive near earthz^galcomhq 5000 jmp-11
stop
events 102
!begin_tod2
activate this
broadcast "Standing by"

21

gbsIII_docs.txt 9/9/2005

endevents
#

If you are going to be defining a continuation for another ACM mission
id
(102) (as I did in eg1) then I would need to provide the <acm_id>. For a
secure script, even if the continuation is for the current ACM mission
that
is in scope (currently running and has not yet reached the 'resolution
phase'), you MUST always provide the <acm_id>, this way, you are certain
that the object is going to perform as scripted (subject to its own
internal AI overrides of course)

If the object is out of scope, i.e destroyed, docked etc, the entire
process will simply be ignored because it won't find the actor. This can
happen if you scripted a ship in, say in an earlier ACM mission and it
got
destroyed by the time it was called again in another future ACM mission.

TIP: This permits me to mention here that if you are going to script
entities that are to be preserved for an extended period, since you
don't
know if they will be around by the time they are needed again, it is
always
wise to either make them indestructible or use a combination of IF flags
to
see if its in scope or not. This way, your script won't fall through. An
example would be if you scripted a transport to go from Earth to Mars in
an
ACM mission. Then several missions later, you want it to return home or
perhaps you want the player or another AI actor, to interact with it. If
your script relies on this sort of action, it will faill if the ship was
destroyed in the interim. See what I mean?

AI DEFINITION FLAGS

The object's ai definition lists its attributes that it is created with.
Each entry MUST be preceeded with a period indicating the starting of
the
object's definition. Though all parameters are mandatory, some are
ignored
in objects for which they are not applicable, ie asteroids do not have
weapons, fighters do not have launch bays etc.

The integrity level displayed for the object in it's TTD is the mean of
it's ENGINE, WEAPON, LAUNCH BAY and REACTOR levels. When hit, damage is
applied to one of these systems at random and based on the proximity of
the
hit. If the mean of these systems is less than 15, the ship will be
disabled. For a station, if it reaches 25, it will emit an SOS signal
allowing it to be captured.

<id> : Identifier created in [dynamic] block, used to reference
object Each object in a script MUST have a unique id.

<shield> : The object's shield level. This offers a level of
protection

to the object. When hit, the shield absorbs the damage. If
breached, then the armor and subsequently the object itself
will take damage.

0 (no shields) - 100 (full shields)

22

gbsIII_docs.txt 9/9/2005

<armor> : The object's armor level. This offers a level of protection
to the object. When hit, the armor absorbs the damage if
the
shields are down or have been breached. If breached, then
the
object itself will take damage.

0 (no armor) - 100 (full armor)

<engine> : This parameter affects the object's turn performance and
the

recharge rate of it's jump engines. The lower the engine's
integrity, the worse the performance of the ship.

0 (no engines) - 100 (fully operational)

<weapon> : This parameter affects the integrity of the ship's weapon
systems. If this value is less than 25, the guns won't fire
and missiles cannot be launched.

0 (no weapons) - 100 (fully operational)

<launch bay>: This parameter affects the integrity of the ship's launch
bays. If this value is less than 25, support ships such as
fighters and shuttles cannot be launched.

0 (no launches) - 100 (fully operational)

<reactor> : This value affects the integrity of the ship's reactor
system.

Though reactor performance is not modelled, if this value
drops to 0, regardless of the state of the other systems,
the
ship/station will explode and be destroyed.

0 (reactor breach) - 100 (fully operational)

<cloak : This allows the ship to be cloaked when created if it has
rating> cloaking capabilities. If the ship's integrity falls below
65%

it will decloak and recloak once it's repaired. Ships that
have
cloaking capabilities will use it based on their skill
level.
However, once a ship launches a weapon or another ship, it
will
briefly decloak and eventually recloak. A ship's cloaking is
activated using the 'CLOAK' script command. This flag does
NOT
cause the object to be cloaked when created. It just says
that
the object has a cloaking device and that it can use it as
its
AI permits. You can cloak any object even if the parameter
is
set to 1 because the 'CLOAK' script command does not check
to
see if the object has this flag set to 1.

0 (no cloak) - 1 (cloak capable)

23

gbsIII_docs.txt 9/9/2005

3.4 SCRIPTING BLOCKS - [EVENT]

You already know that you can use the [acm] block event identifiers
within
the EVENT/ENDEVENT section of the [ai] block in order to make entities
do
interesting things. So far, in the examples you have seen in the
previous
sections, only the [acm] identifiers were used.

Also, the event identifiers in the [acm] block are checked at a
predetermined time and the <acm_tick> event is fired every 5 seconds.
What
if you wanted to create your own events that you can check at whatever
interval you choose?

Enter the [event] definition block. Don't confuse this with any other
block. This block is used to register user defined timer events which
occur
once or in a user defined cyclic (repeated based on a timed pattern)
sequence. In this block, you can create events that you can use in ANY
object's [ai] block.

The [event] definition block may appear anywhere in the script, and
forward
references are allowed. There may be more than one [event] definition
block
and subsequent blocks augment the last [event] block. Though you can put
this block anywhere in the file, you must make it common practice to put
it
at the END of the file. This way, if you want to add/remove and event
id,
you know where to look.

SYNTAX

[event]
!<event_identifier> // user defined identifier
[<date>[,<repeat interval>]] // date, repeat etc

The leading ! character indicates that the string is an event
identifier.
Internal event identifiers (See SECTION 7.0) are already registered
internally and need not be registered here. This block is only for
registering external user defined events which trigger specific actions
determined by the script.

The event identifier is equivalent to predefined event names and can be
any
string. The <event identifier> may NOT be a keyword nor the name of a
previously used actor identifier.

Optional lines following the event identifier are dates at which the
event
is signaled. For each date, an optional repeat interval (in minutes) can
be
specified. The event will be signaled on the date/time specified, and
then
again repeatedly every <repeat interval> minutes. If the <repeat
interval>
is not specified the event is signalled only once. Several lines may be
used to list more dates/intervals when the event is signaled, until an !

24

gbsIII_docs.txt 9/9/2005

is
found which starts the definition of a new event. This is called a
CYCLIC
event. Once this type of event is fired, it will continue to be
signalled
indefinitely or until the pre-defined date expires.

The cyclic timers are optional, in which case the event is not signaled
by
time, but by a signal action.

EXAMPLE

User defined events can be signaled at any time within the [ai] block of
any object by using the 'signal <event_id>,[<time>]' script command
within
another event. You can have as many commands within an event as you
like.
You can even create an event loop if you'd like. Just make sure you get
the
timing right.

e.g. #1

In this example:

- The !saythis1 event is fired immediately (no time given) when the
!begin_tod2 event is fired. Once fired, the 'broadcast' command defined
for
the event, is fired.

- The !saythis2 event is fired 5 minutes after the !begin_tod2 event is
fired.

- The !saythis3 event is fired 2 minutes after the !saythis2 event is
fired.

- The !saythis4 event is fired every 6 minutes once its called for the
first time. Giving 0 as the date, signals it at the current date/time.
To
schedule another date, refer to SECTION 4.4 on how to use the unversal
date/time format. The commands may seem strange to you because you don't
know about them yet. But, I have used an IF condition in this cyclic
event
so that certain conditions are tested every 6 minutes. Every 6 minutes,
objectB checks to see if the player's BC is in its current region. If
this
is true, then it powers up its engines, arms its weapon systems and
attacks
the player. If not, it broadcasts a message until it is fired again, 6
minutes later. You will also notice that I use the !resolve_tod2 ACM
event to allow this object to go home. I also remembered to tell it to
activate its engines and systems. This is a safeguard because if the
player
never shows up this region, then objectB will never be able to fly nor
fire
weapons. This means that when the ACM scenario resolves, it won't be
able
to leave.

- Notice that even though objectB was the one that fired the !saythis3
event, objectA can also do something because that event is also defined

25

gbsIII_docs.txt 9/9/2005

within its event definition. In this case, objectA will perform two
actions
once the event is fired. WARNING: If I had defined the cyclic !saythis4
event for objectA, the script would still work but the logic would be
different! Why? Because the FLEE command tells objectA to leave the area
if
the player's BC shows up. But wait! Since the FLEE command causes it to
leave the current region and the event is cyclic, every 6 minutes,
objectA
will check its current region for the BC and if its there, it will
again perform a FLEE to another region. Cool huh?

Notice also that in the [event] block definition, the cyclic event timer
only pertains to !saythis4 because it was defined immediately AFTER the
event it was defined for. Had I placed it BEFORE !saythis4, then the
!saythis3 event would be cyclic and !saythis4 would be a normal event
that
is fired once only.

[dynamic]
terran military,,objectB,generis,friendly_unit
[ai]
.objectB,100,100,100,100,100,100,0
start inactive near earthz^galcomhq 5000 jmp-11
stop
events 102
!saythis1
broadcast "standing by"
!saythis

!saythis2
broadcast "still standing by"
signal saythis3,2

!saythis3
broadcast "stopping all engines"
broadcast "weapon systems now off"
halt on this
weapons off this
signal saythis4

!saythis4
IF HERE bc THEN
halt off this
weapons on this
attack it
ELSE
broadcast "Player not detected in current region"
ENDIF

!begin_tod2
activate this
broadcast "Standing by"
signal saythis1
signal saythis2,5

!resolve_tod2
halt off this
weapons on this
rtb

endevents
#
.objectA
events 102
!saythis3
IF HERE bc THEN
broadcast "I'm outta here!"

26

gbsIII_docs.txt 9/9/2005

flee
ENDIF

endevents
#
[event]
!saythis1
!saythis2
!saythis3
!saythis4
0,6
#
$

Using events, you can create some pretty advanced and complex event
conditions. In the next example, I use this trick to simulate a
conversation among the BC crew during a scenario. Notice that I use the
ACM
!todtick (called every 5 secs) to check for the ship. If found, thats
what
triggers the dialogue. Notice how I use timing sequences to simulate
conversation where someone says something and some time passes before
someone else responds. Because the commands are fired all at once but
are
processed in order, everyone will speak one after the other in some
instances.

This is a script fragment so some definitions are missing. Notice
the use of the FLAG1 in the 'reingard' actor. Since the !tod1tick is
processed every 5 secs, I don't want the dialogue repeated. So, I use
this
flag to get out of the event loop once its been set, i.e. the dialogue
has
already been played once.

e.g. #2

events 102
!todtick

IF FLAG1 reingard RETURN
IF HERE bc THEN
say CO,"We seem to have located the Reingard commander"
say CO,"Scanning for vital signs now..."
signal found_reingard,4
signal talk1,1
signal talk2,3
signal talk3,4
FLAG1 ON reingard
ENDIF

!talk1
say RE,"No vital signs detected commander"
say RE,"....looks like they're all dead"
say CO,"Searching computer logs now"
say RE,"I'll do a system wide analysis check..."
say RE,"Kara, set me up with a class 5 diametric scan range"

!talk2
say TO,"...am getting an interference from the antimatter reactor"
say TO,"looks like the gravimetric stabilizer has be polarized"
say CE,"I can probably bypass it by rigging a distortion field"
say CE,"in the systems relay matrix"
say CE,"...lets tractor it"
say FO,"Roger that Kendrick"

!talk3

27

gbsIII_docs.txt 9/9/2005

say CO,"Commander, I have accessed the computer logs..."
say CO,"The probe is broadcasting from Polaris!"
say RE,"All we have to do now is figure out what happened to the
crew"
say CE,"....and the Hyperion Subspace Device"

endevents
#
[event]
!talk1
!talk2
!talk3
found_reingard
$

Note the use of the $ character in these examples. This is to show that
the [event] block is at the bottom of file. Remember what I said earlier
that the $ character must be the last line in the script source file?

WARNING: If you are going to be signalling an event from within the [ai]
blocks of several actors, be sure to know *exactly* what each actor is
going to be doing. This is one area where I've seen many scripts behave
differently because the logic is flawed.

3.5 SCRIPTING BLOCKS - [SETS]

Though you can script individual actors, there are times when you will
want
to work with a group of actors. This is where sets come in. Using sets,
you
can work with actors, entities as well as cargo items using a pre-
defined
selection set within the [set] block. Like the [event] block, you should
try to keep the set definition block at the end of the file so that its
easy to locate and modify.

SYNTAX

[sets]
:<set identifier> // user defined identifier
[<set member>,...] // set members

The leading : character indicates that the string is a set identifier.

The set identifier is equivalent to predefined event names and can be
any
string. The <set identifier> may NOT be a keyword nor the name of a
previously used actor identifier. All set identifiers must be unique.

<set member> may be a collection of races, castes, actors, objects,
concrete classes, previously defined sets, and numeric store items. The
set
acts as a collection of one each of these entities. The <set member> may
be
given in any order and may span several lines,

In the case of subsets, the set contains all the elements of the named
subset as well as it's own elements. A set may not include iteself in
its definition.

A new set definition, new block, or end of file "closes" the current
set.

28

gbsIII_docs.txt 9/9/2005

The set may subsequently be used in several internl or user defined
events
and commands including !detect, !exist, create etc. Forward referencing
of
the set is allowed.

There can be any number of user defined sets. The only penalty of a set
is incurred when it is used in !detect or create because each one is
processed individually.

EXAMPLES

e.g. #1

In this example, the items placed in the cargo pod are not in a set.
When
the pod is created there will be 100x67, 1x189, 50x277 items. The items
use
the syntax of the ADD_STORE command (quantity x item_number). Once the
'cargo_pod' actor is created, it will contain the items defined using
the
ADD_STORE command.

[dynamic]
terran scientist,,cargo_pod,cargo2,pod_with_stuff
[ai]
.cargo_pod,100,100,100,100,100,100,0
start inactive near earthz^jmp-10 2000 jmp-04
stop
events 102
!begin_tod2
activate this
add_store this,100,67,1,189,50,277

endevents

e.g. #2

In this example, the items placed in the cargo pod are in a set. Also
notice that there are two lines in the set. You can have as many lines
as
you want. The shorter the line, the easier it is to read and understand.
The items in the set definition use the syntax for the ADD_STORE command
(quantity x item_number). Once the 'cargo_pod' actor is created, it will
contain the items defined in the 'cargo_pod1' set.

Also in this example, there are two other sets which create generic
cargopods (with no items in them) when the !begin_tod2 event for the
cargo_pod actor is fired. (1) The 'cargo_pod2' set uses the internal
'cargopod' class name. This allows the system to pick a random type of
cargopod. There are only two types of cargo objects in this internal
class.
It consists of cargo1.3dc and cargo2.3dc objects. See SECTION 8.0 for a
list of internal classes and the OBJDEFS.SCR file for a list of objects.
(2) The cargo_pod3 set uses the object name directly.

Note that unlike the cargo_pod actor which is created by the script, the
other two pods are created using the CREATE command which uses the set
to
determine what type of entity to create. It creates one of each set
type.

The [event] block is just there to demonstrate how these two sets can

29

gbsIII_docs.txt 9/9/2005

co-exist at the end of the file. If you remembered the discussion on
events, then you will see that the cargo_pod actor will signal an event
2
minutes after it is created. It is that event that causes the two other
pods to be created.

Another difference with these 3 pods is that only the first one has an
id.
Using this id, you can fire an event that uses a command to add items to
it. Since the other two don't have an id, you cannot script any events
for
them and this is why they are created with no items in them. If you
target
the first pod in the VDD, you will be able to see its contents and have
a
shuttle collect them.

[dynamic]
terran scientist,,cargo_pod,cargo2,pod_with_stuff
[ai]
.cargo_pod,100,100,100,100,100,100,0
start inactive near earthz^jmp-10 2000 jmp-04
stop
events 102
!createit
create 1,cargo_pod2,cargo_pod3

!begin_tod2
activate this
signal createit,2

endevents
#
[sets]
:cargo_pod1
100,67,1,189
50,277
:cargo_pod2
cargopod
:cargo_pod3
cargo2.3dc
[event]
!createit
$

e.g. #3

In this example, a set of hostile targets is defined in a set and
accessed
collectively. The friend1 actor will broadcast that message if it
detects
any member of the 'hostiles' set, in this case, hostile1 or hostile2.

You will also notice that it also has provision for detecting just one
ship. In which case, it will broadcast both messages if it detects
hostile1
but the second message will not be broadcast for hostile2. You could add
a
'!detect hostile2' event for a message specific to that actor.

You may be wondering about the 'attack it' command. Well, its perfectly
valid. The actor will act the first member of the set that it detects.
If
it gets destroyed, then it will move on to the next member until all

30

gbsIII_docs.txt 9/9/2005

members of the set are out of scope (left the region, destroyed, docked
etc).

The 'hostiles_class' set lists races and a caste that the player has
determined to be hostile. In this case, if any Gammulan or Vesperon type
actor is detected, the message will be sent. It will also be sent if an
insurgent caste is detected. The '!detect gammulan,vesperon,insurgent'
event could also have been used, but I used a set to illustrate the
benefits of using a set. This set can be accessed by any object without
have to remember all the set entities as you would if you were writing
each
one individually.

Though you can mix and match entities in a set, be aware of how the
actor
will act based on each member of that set. In the example you will see
that
the friend1 actor will repeat the broadcast under several circumstances
as
explained above.

Also, create unique sets when possible to avoid confusion. This means
that
while you can mix races and castes in a set, try not to put cargo items
in
that set too. You will get confused because of how the parameters are
passed.

[dynamic]
terran military,,friend1,interceptor_mk1,friendly_unit
gammulan military,,hostile1,vandal,leader
gammulan military,,hostile2,starlance.3d,escort
[ai]
.friendl,100,100,100,100,100,100,0
start inactive near earthz^jmp-10 2000 jmp-04
cruise earthz^jmp-04
stop
events 102
!begin_tod2
activate this

!detect hostiles
broadcast "hostile ships detected!"
attack it

!detect hostile_class
broadcast "hostiles detected!"

!detect hostile1
broadcast "leader detected!"

endevents
#
.hostile1
start inactive near earthz^jmp-10 5000 jmp-04
stop
events 102
!begin_tod2
activate this
patrol earthz

endevents
#
.hostile2
start escort hostile1 250
stop
events 102

31

gbsIII_docs.txt 9/9/2005

!begin_tod2
activate this
broadcast "escorting leader"

!detect friend1
broadcast "enemy target detected"

endevents
#
[sets]
:hostiles
hostile1,hostile2
:hostile_class
gammulan,vesperon,insurgent
$

In conclusion, sets can be very powerful and make a script more dynamic
and
readable. Also, you can use sets to generate a random set of entities.
The
script for Xtreme Carnage uses sets to generate a random type of hostile
ships in some levels.

3.6 SCRIPTING BLOCKS - [MACRO]

Sometimes scripts can be repetitious and long especially if you are
designing a lengthy campaign. In these instances, you may want to use
macros to simplify some of these commands that you use frequently.

Macros are defined in a [macro] block. The [macro] block should end with
a line containing [endmacro]. The macro body may contain most types of
commands including other script blocks.

More than one macro can be defined in a macro block. The [macro] block
is
also subject to the guidelines for creating other blocks such as [ai]
and
[dynamic]. The block must be in scope. You are advised to keep macro
blocks
either at the beginning or at the end of the script file. This way, it
is
easy to locate and change.

SYNTAX

[macro]
:<macro name>[,formal parameter[=default value]]...
<macro body>
:MACRO_END
[endmacro]

The leading : character indicates that the string is a macro identifier.

In the macro, text substitution of formal parameters is effected by
placing
the parameter within % metacharacters, i.e

%<formal parameter>%

When a macro is encountered in a script, it is expanded to the general
form
using the following syntax:

<macro name>([actual parameter][,...])

32

gbsIII_docs.txt 9/9/2005

If an actual parameter is not specified the default value (if given in
the macro definition) is substituted for it.

The macro name MUST begin on the first non-whitespace character in the
line, and a macro with no arguments must be specifed as follows:

<macro name>()

If <macro name> is not previously defined, no expansion occurs.

Macro definitions may call other macros, which need not be previously
defined.

Macro definition continuation lines for macros with many arguments is
allowed. If the last charactor on the line is a comma, then the
following
line is considered a continuation and is appended onto the previous
line.
continuations may span several lines, eg

:macro(param1,param2,param3,param4,param5,param6,param7,param8)
<macro body>

may be written as:

:macro(param1,param2,
param3,
param4,param5,
param6,param7,param8)
<macro body>

EXAMPLE

This macro in eg1 generates ODS platforms using a default set of
parameters
or replacement parameters. It contains a macro for actually creating the
ODS object as well as an event block macro!

The lines that invoke the macro, do not need to be placed in any
particular
block but for safety's sake, put them where they are most logical. Why?
Because the macro defines all the valid blocks required for an object.
This
includes the [dynamic] and [ai] blocks.

In this example, two types of ODS platforms are created around Earth and
Sygan. When the friend actor is created, it can also reference a macro
object because the macro also provides a valid object id.

Notice how in the first macro call, the default orbital speed of the
Earth
ODS is over-ridden with a new value.

Observing the macro definition, you can see how easy it is to call the
'make_ods' macro without having to write a new definition each time.

WARNING: When calling the macro, you MUST observe the order in which the
variables were ordered in the macro defnition. From eg1, you will see
that
the first call to the macro overrides the object type and the orbital
speed. These values are in the proper order. If the '1000' was before

33

gbsIII_docs.txt 9/9/2005

the
'xtender.3dc' override variable, the parser will flag this as error
because
that variable expects an object and not a numerical value. It is
IMPORTANT
for you to remember this. You can bypass, i.e, use the default macro
variable, by simply using a , metacharacter where the value should be if
you are going to be skipping one value in order to override the next.

e.g. #1

[macro]
:ods_events()
events
!begin_tod1
broadcast "I'm operational"

endevents
:MACRO_END
#
:make_ods(race caste,skill,planet,
distance=170000,
speed=500,roll=90,pitch=0,
obj_type=trancor.3dc,)
[dynamic]
%race% %caste%,%skill%,%planet%_ods,%obj_type%
[ai]
.%planet%_ods,100,100,100,100,100,100,0
start orbit %planet%,%distance%,%speed%,%roll%,%pitch%
stop
ods_events()
:MACRO_END
[endmacro]
#
make_ods(terran military,,earth,,1000,,,xtender.3dc)
make_ods(terran insurgent,,sygan)
#
[dynamic]
terran military,,friend,ic2.3dc
[ai]
.friend,100,100,100,100,100,100,0
start inactive near earthz^jmp-10 2000 jmp-04
stop
events 102
!begin_tod2
activate this

!detect earth_ods
broadcast "Orbital Defense System detected"

endevents

e.g. #2

In this example, a macro is used to generate a variety of ships. Note
that
I have created a macro for almost every parameter allowed.

I have also created a macro expansion for a simple form of START/STOP
type.
You can do this if you want but just bear in mind that the START/STOP
section in the [ai] block, takes several different parameters!
See SECTION 6.1 for more on this section.

Notice how I augment the default events for the second ship (insurgent)

34

gbsIII_docs.txt 9/9/2005

created in the macro, with another event. Since you can have several
[event] blocks for an object, this is perfectly legal. Just remember
what
I've said about the scope of blocks and where to place them. If I had
inserted the new events section when the [dynamic] section for another
actor was in scope, an error would occur. As your scripting skills
improve,
you will see how to use the object id anywhere in a script to override
the
default events for an actor. In this example, you can assume that I have
used this technique to augment another object's (friend1) macro events.

[macro]
:ship_events()
events 102
!begin_tod1
activate this

endevents
:MACRO_END
#
:make_ship(st_mode,st_region,
race caste,skill,obj_id,obj_type,vddname,
shield=100,armor=100,engine=100,weapon=100,bay=100,
reactor=100,cloak=0,)
[dynamic]
%race% %caste%,%skill%,%obj_id%,%obj_type%,%vddname%
[ai]
.%obj_id%,%shield%,%armor%,%engine%,%weapon%,%bay%,%reactor%,%cloak%
start %st_mode% IN %st_region%
stop
ship_events()
:MACRO_END
[endmacro]
#
make_ship(inactive,marsz,terran military,,friend1,ic2.3dc,friendly_ship)
make_ship(inactive,syganz,terran
insurgent,,enemy1,vandal.3dc,enemy_ship)
events 102
!detect bc
attack it

!resolve_tod1
rtb

endevents
#
[ai]
.friend1
events 102
!damaged this,50
broadcast "Damaged by 50%"

endevents
#

Macros can be as powerful as you want them to be. They can also be
confusing and complex. Use wisely. When in doubt, do it the hard way.

3.7 SCRIPTING BLOCKS - [REGION]

You have no business messing with the [region] block. So, this section
is for information purposes only.

There is absolutely NO reason for you to use this block because the
internal

35

gbsIII_docs.txt 9/9/2005

defaults are in use by the internal master script. Defining a [region]
block
in your own script will not only alter the game universe, it will most
likely wreak havoc with the 'world order'.

This block is used to define initial region settings & autogeneration.

SYNTAX

The following syntax is used for defining region startup parameters. A
region may only be ONCE in the script and can apply to space or planet
regions. See NAVCHART.PDF for more on region settings.

SET <race>,<rp>,<dp>,<con>,<tlvl>,<dlvl>,<tclass>,<inf>,<sec>,<pop>

<race> - Any valid race
<rp> - Resource Points
<dp> - Defense Points
<condition> - Normal,Unstable,Critical,Barren,Invasion
<tlevel> - Tech Level (1-10)
<dlevel> - Defense Level (1-10)
<tclass> - Tech Class (AD,MN,AG,RO,HT)
<inf> - Inflation Level (0-5)
<sec> - Security Status (LEGAL,ILLEGAL)
<pop> - Surface Population (0-100%)

DEFINING REGION AUTO-GENERATION ENTITIES

The following syntax is used for auto-generated entities. If a <race>
appears as the first parameter instead of the SET keyword, this indicates
to
the parser that it is an auto-generated entity. Autogeneration is region
and
event based. These all appear within the region block consisting of
region
names in the following format:

Note: You can turn auto-generation on/off using the AUTOGEN script
command.

:<region>,<active_max>,<inactive_max>

<region> - Any space or planet region, eg EARTHZ, EARTH etc

<active_max> - the max number of objects that can be generated in a
region

that is ACTIVE or one jump away from the player or a
player controlled probe/ship.

<inactive_max> - the limit of the number of objects generated for a
region

that is INACTIVE.

The region specification is followed by one or more event probabilities
and
class instance which may be augmented. The format of each event is:

<race>,<caste>,<probability>,<event_interval>,<loiter_interval>,
<start_flag>,<search_flag>,<exit_flag>,<class>,<int_ag_max>,<int_ag_prob>

<race> - Any valid race.
Can also use E,F,N,* for enemy, friendly, neutral

36

gbsIII_docs.txt 9/9/2005

(default), or random

<caste> - Any valid caste

<probability> - The probability in percent that the unit will actually
be generated. Floating point value between 0.002 and
100.
The smallest allowable value is 0.002 which might be
used
to generate a galaxian ship. 100 means the unit is
always
generated if the region limits are not exceeded.

<event
interval> - Time in minutes between each generation of a unit of
this

class.

<loiter - The max time in minutes that the unit will wait before
interval> leaving if it can't find anything interesting to do.

<start - S,P,M,U,J,*, // station/planet/moon/uncharted/jump/all.
flag> Acts as location mask, if not specified, won't be
visited.

e.g PM means the unit comes from a moon or planet only
the actual planet or jump point etc is chosen at random

<search - S,P,M,U,J,*, // station/planet/moon/uncharted/jump/all.
flag> Acts as search mask, if not specified, won't be visited.

The unit will visit each flag type before leaving the
region. Used for search and patrol actions.

<exit - S,P,M,U,J,*, // station/planet/moon/uncharted/jump/all.
flag> Acts as exit mask and determines how entity leaves
region.

If not specified, will not be used.

<class> - Class of object being generated.

<int_ag_max> - max number of intruders to create on players ship when
this object is created. The probability of this occuring
is given by int_ag_prob. Use 0,0 to disable the
generation
The BC must be in the player region or the intruder
generation is ignored. Intruders can't beam to player's
ship if it is cloaked.

<int_ag_prob> - Intruder autogeneration probability (floating point)

EXAMPLE

e.g. #1

[macro]
:enemy_aggressive() // AG macro
ENEMY,RAIDER,10,5,5,J,J,J,cruiser,2,5
ENEMY,CRIMINAL,10,5,5,J,J,J,cruiser,2,5
ENEMY,ASSASSIN,10,5,5,J,J,J,cruiser,2,5
ENEMY,MERCENARY,10,5,5,J,J,J,cruiser,2,5
ENEMY,RAIDER,10,5,5,J,J,J,fighter,0,0
ENEMY,CRIMINAL,10,5,5,J,J,J,fighter,0,0
ENEMY,ASSASSIN,10,5,5,J,J,J,fighter,0,0

37

gbsIII_docs.txt 9/9/2005

ENEMY,MERCENARY,10,5,5,J,J,J,fighter,0,0
:MACRO_END
#
:random_aggressive()
ANYRACE,MILITARY,10,5,5,J,J,J,cruiser,4,5
ANYRACE,RAIDER,10,5,5,J,J,J,cruiser,4,5
ANYRACE,RAIDER,10,5,5,J,J,J,fighter,0,0
ANYRACE,CRIMINAL,10,5,5,J,J,J,cruiser,2,5
ANYRACE,MILITARY,10,5,5,J,J,J,fighter,0,0
ANYRACE,CRIMINAL,10,5,5,J,J,J,fighter,0,0
ANYRACE,ASSASSIN,10,5,5,J,J,J,cruiser,2,5
ANYRACE,ASSASSIN,10,5,5,J,J,J,fighter,0,0
ANYRACE,MERCENARY,10,5,5,J,J,J,cruiser,2,10
ANYRACE,MERCENARY,10,5,5,J,J,J,fighter,0,0
:MACRO_END
#
[region]
:earthz,10,5 // Region
SET TERRAN,0,0,NORMAL,10,10,AD,0,LEGAL // Region definition
TERRAN,MILITARY,70.5,10,10,J,J,S,fighter,0,0 // AG entity
TERRAN,HARMLESS,80.5,9,10,J,P,J,carrier,0,0 // "
enemy_aggressive() // macro expansion
friendly_military() // "
#

NOTES:

(1) A region can be made truly dynamic using very powerful macros with
eclectic entities. However, be certain that you know what you are doing.
Since AG entities use their own internal AI logic, they will use the
default
AI rules for their 'type' based on their race/caste. So for instance if
you
generate 'terran military' and 'gammulan military' actors in the same
region, a fight will ensue. Period. Similarly, if diplomats are generated
in
a region that has a probability of raiders showing up, they will get
attacked. This sort of dynamic nature of the AG process is what keeps the
universe dynamic. You can define protected regions, trade routes etc.

It is not an easy task to create a truly dynamic world and most
especially
one which will allow directed (actor using defined scripted actions) or
'free-form' (AG actor using internal AI rules and logic) actors. It has
taken me over 5 years or more to get it just right and there are still a
lot
of variations that I still haven't investigated and permutations that I
haven't considered.

This is all due to the advanced AI that actors possess and which
determines
what they do whether they are directed or free-form. In fact, creating a
directed actor (as you know by now) only gives it direct orders. Once it
has
performed those, or if there is a conflict with a user defined order and
its
internal AI, an actor will always consult its internal AI rules in order
to
exist as it was intended. An Insurgent is an Insurgent, even if you told
it
to halt and park next to a Terran station. The minute it is created, it
will

38

gbsIII_docs.txt 9/9/2005

consult its internal AI logic in order to figure out what to do once the
station starts launching attack ships at it. A directed actor created in
a
region, will find something to do even if you don't give it an order. In
this instance, it acts just like a free-form actor.

(2) The active/inactive amounts can be overridden by other objects within
the region. This means that if a region is scripted to only have 10 AG
entities at any one time, once those entities start launching their own
ships (carriers etc), the number of objects in the region will increase.

(3) An ACTIVE region is one that the player or one of his ships or probes
has visited. It is also one that has an AI actor that requires background
processing. This includes stations, ODS systems, comets etc. Therefore,
out
of the 91 space regions, 75 planets and 145 moons in the game, since each
one probably has an entity, this means that about 75% of them are active
at
the start of the game. The only exception would be a region that only has
a
region with no station, ODS or comet. These actors that require constant
AI
updating are called 'dynamic' entities. Others, called 'static' entities,
such as the planet object, jump gates etc, do not require background
processing because they have no AI.

Once you, one of your ships/probes, or perhaps a scripted ship pass
through
this type of region (one without dynamic actors), it will switch it from
INACTIVE to ACTIVE. The planetary region itself (if the space region
contains a planet/moon) however will remain INACTIVE until the said
entities
actually enter it. So, yes, the space and planetary regions are processed
independently of each other.

Once a region is made ACTIVE, it cannot be switched back. This is why, if
you travel enough around the galaxy, the more skirmishes that are going
on,
the slower the game gets. In the next generation of this engine which
will
debut in the sequel, BC:3020AD, this processing has been streamlined
remarkably. Future versions may probably have SMP support.

3.8 CREATING A WING OF UNITS

You can collect a group of units into a single wing and then be able to
manipulate the wing as a single entity or access each unit in the wing
directly.

[dynamic]
:<wing_id> (single colon to start the wing block)

<object list>

:: (two colons to end the wing block)

<wing_id> must not contain a '.' character.

<object list> is a list of one or more object definitions using the
format of the [dynamic] block.

This will create a group of local wing objects that can be

39

gbsIII_docs.txt 9/9/2005

simultaneously ordered in ai blocks.

<id> cannot be accessed in [ai] blocks unless the current scope is
the wing it is defined in, but it can be globally accessed using
the object syntax

<wing_id>.<id>

e.g attack wing1.f1

The syntax of <object_id> allows multiple <object_ids> to be
used. The following script then is applied to all listed
objects. The syntax is:

.<object_id>[,<object_id>...] [params]

or

..

The second form is used to cancel scripting for the current
wing (if any) and return to the global script scope

e.g. This is a simplified script with multiple objects

[dynamic]
vesperon diplomat,,enemy1,lrt10,leader
vesperon military,,enemy2,vandal,escort1
vesperon military,,enemy3,corsair,escort2
[ai]
.enemy2,enemy3,100,100,100,100,100,100,0 #1
.enemy2
start inactive escort enemy1 150 3 #2
stop
.enemy3
start inactive escort enemy1 150 9 #2
stop
.enemy2,enemy3 #3
events 101
!beginL1

activate this
!detect player

attack it
!resolveL1

flee
endevents

Notes:

#1 applies parameters to all objects listed.

#2 the objects have unique start directives so that they don't
appear at the same location.

#3 this defines the following script commands to apply to both
objects, since these orders are identical.

A script that uses .<wing_id> in place of an .<object_id>
can be used to encapsulate the objects in the wing. The
example above can be rewritten as shown below:

[dynamic]

40

gbsIII_docs.txt 9/9/2005

:enemy_wing1
vesperon diplomat,,enemy1,lrt10,leader #1
vesperon military,,enemy2,vandal,escort1 #1
vesperon military,,enemy3,corsair,escort2 #1
::
[ai]
.enemy_wing1,100,100,100,100,100,100,0 #2
.enemy1,50,50,15,100,100,100,0 #2
start inactive near earthz^earth 5000 jmp-10
stop
.enemy2
start inactive escort enemy1 150 3
stop
.enemy3
start inactive escort enemy1 150 9
stop
.enemy2,enemy3
events 101
!beginL1

activate this
!detect player

attack it
!resolveL1

flee
endevents

Notes:

#1 The object ids enemy1,enemy2,enemy3 are local to the enemy_wing1
group and may be used for other objects. You can then define wings
in a [macro] block and then call-up multiple instances of them
without the difficulties of unique naming.

#2 Specifying object params for the wing sets these parameters
for all objects in a wing, they are redefined here for T1.
previosly it was invalid to specify object paramters more than
once. It is now possible to re-define them. The last definition
is the one that is applied to the object. These paremeters
are fixed once the script is running in the game (i.e you cannot
change them "on-the-fly")

An example use of a macro that defines a wing

[macro]
:WINGTYPE1(NAME,M_NUM,M_NAME)
#
Note that the [dynamic] line is part of the macro
definition
#
[dynamic]
:%NAME%
vesperon diplomat,,enemy1,lrt10,leader
vesperon military,,enemy2,vandal,escort1
vesperon military,,enemy3,corsair,escort2
::
#
Again [ai] is part of the macro definition
#
[ai]
.%NAME%,100,100,100,100,100,100,0
.enemy2
start inactive escort enemy1 150 3

41

gbsIII_docs.txt 9/9/2005

stop
.enemy3
start inactive escort enemy1 150 9
stop
.enemy1,enemy2,enemy3
events %M_NUM%
!begin%M_NAME%

activate this
endevents
.enemy2,enemy3
events %M_NUM%
!detect player

attack it
!resolve%M_NAME%

flee
endevents
:MACRO_END
#
If you suspect problems with macros try adding the following
between after any [macro] blocks that end immediately before
[dynamic] or [ai] blocks
(as in this case)
#
[endmacro]
#
Orders specific to the lead ship
#
[ai]
.ew1.enemy1,50,50,15,100,100,100,0
start inactive near earthz^earth 5000 jmp-10
stop
#
call up a wing for mission 101 (day 1 phase 1)
Note this must be done after defining the lead
ship START position (ew1.enemy1 above) since the fighters need to know
where the transport is located. Otherwise you will
get a "defined outside region" error
The transport ship definition in the [dynamic] section in the
macro definition is processed before the preceding
lead ship start/stop placement (in a prior pass) so it is
valid to reference it before it is defined.
#
WINGTYPE1(ew1,101,L1)
#
The macro can be used again to create another similar
wing of ships for example:
#
.ew2.enemy1
start inactive near earthz^earth 25000 jmp-02
#
This time the lead will dock with a station
#
dock galcom
stop
#
WINGTYPE1(ew2,102,L1)

==
4.0 FREQUENTLY ASKED QUESTIONS
==

Q. HOW DO I DISTRIBUTE A SET OF SCENARIO SCRIPTS?

42

gbsIII_docs.txt 9/9/2005

A. You pack up the MIS, DES and DAT files associated with the script and send
to the person. They would then copy it to their SCRIPTS folder and run the
game. The files can either be in a zip file (neater) or not. e.g. you
could
have the files in a MYSCENARIO.ZIP file or just have the three files in
the
folder unzipped.

If there are naming conflicts e.g. you create scripts which have the same
name
as the game script, the game will use the scripts with the most recent
date/time
stamp. So, e.g. if you created a Roam scenario script for the commander
and call it CMDR_BCR0000.SCR, the new version will be used by the game.

NOTE: When naming your scripts, do NOT use the naming convention used by
game
scripts!! e.g. BCIA0101 to BCIA0125 are a game scripts, so you should
start
your numbering from BCIA0201 to BCIA0299, BCIA0301 to BCIA0399 etc. This
applies
to all script types (ROAM, ACM, IA, TA) but each have their own naming
conventions.

Q. CAN I MODIFY THE SPACE OR PLANETARY WORLD?
A. No. You can only create new scenario scripts.

Q. CAN I CREATE NEW MODELS SUCH AS SHIPS ETC?
A. No. You can only use existing 3D assets already in the game. For a list of

game 3D assets, refer to the OBJDEFS.SCR file as well as the game appendix
files.

Q. CAN I MESS WITH THE GAME INI FILES (DATA and PTE2 FOLDERS)?
A. No, some are MD5 encrypted and the game will refuse to start if you mess

with them.

Q. HOW DO I MODIFY THE PARAMETERS OF AN EXISTING UNIT IN THE GAME?
A. If you are interested in changing settings such as flight dynamics, weapon

loadouts etc, look in the OBJDEFS.SCR file.

If you are interested in changing the class definitions such as support
crafts, types, complement etc, look in the OBJCLASS.SCR file.

e.g.

To change the firing rate of the Battlecruiser MK3 carrier, from one shot
every 350ms to one shot every 100ms, go to OBJDEFS.SCR line 161 and change
the %350 parameter to %100

To change its HJ transit time from 120 secs to 10 secs, change the J120000
to J10000

To change its HJ recharge time from 90 secs to 5 secs, change the j90000
to j5000

To change the damage factor of the shots fired by the Battlecruiser MK3
carrier (and all crafts that use that shot type), go to OBJCLASS.SCR line
502 and make a note of which shots it uses. They are type SHOTl4r. Now
go to OBJDEFS.SCR line 589 and change the E100 to E1000 to make each shot
give 1000 units of damage instead of the default 100.

The description of all the parameters are located at the top of the

43

gbsIII_docs.txt 9/9/2005

system script file.

NOTE: that editing any of the .SCR system script files requires
preparation
of ALL script files associated with them! If you do not do this (see the
PREPSCRIPTS.BAT file comments), then you will have problems. Since you
don't have the sources for the scenarios which ship with the game, the
new parameters will NOT work with those scenarios, they will only work
with your scripts. As such, if you make drastic mods to these system
files, NONE of the scenarios which ship with the game, will work.

Q. HOW CAN I MODIFY THE ATTRIBUTES OF STATIONS ALREADY IN THE GAME WORLD?
A. Because stations, starbases, orbital defense systems, supply stations etc

are also scripted, you can access them WITHOUT having to modify the
system scripts in which they are defined. This example modifies the
GALCOMHQ station from within your script and does not affect the station
when other scenarios are run.

[ai]
.galcomhq
events 1
!setupl1
damage this 15 25 -1 -1 -1 -1
weapons off this
launches off this
signal ghq_back_online,15

!detect player
broadcast "OUR LAUNCH AND WEAPON SYSTEMS ARE OFFLINE"
broadcast "SHOULD BE BACK ONLINE IN ABOUT 15 MINUTES"

!ghq_back_online
launches on this
weapons on this
signal launch_wing,5

!launch_wing
launch fighter,4,defend galcomhq
broadcast "PROTECTIVE WING LAUNCHED"

endevents
#
[event]
!ghq_back_online
!launch_wing

Note that you don't need to include the [ai] block if you are adding
this definition within a pre-existing [ai] block. Because this script
fragment uses the station's identifier (see GLOB_DYN.SCR), you have direct
access to it.

In the example above, the station's shield and armor integrity are
reduced to 15% and 25% respectively. Its weapons and launch systems are
also disabled. They are however turned back on 15 mins after this script
starts via an event trigger. And five minutes after that, it launches
a wing of four fighters (picked at random) to defend itself from further
attack.

Q. HOW DO I OBTAIN THE SPACE REGION NAME AND ENTITIES FOR USE WITH SCRIPTS?
A. You can start objects in a space or planetary region. In the case of a
space

region, you can use the "START NEAR" or "START IN" directive. But you need
to know the following "

(1) The name of the region

44

gbsIII_docs.txt 9/9/2005

(2) The name of an object in the region.

To obtain the name of the region, look in the WORLD.SCR file. Any region
name ending with the Z character, is a space region. Without it, the
region
is a planet or moon.

e.g. in world.scr line 110, is the name of the space region where the
planet (line 111) and moon (line 112) are located. Between lines 113-120
are the jump anomalies in the region.

If you start the game and go to the Earth space region, the go to Tacops,
you will see these two planets and those jump anomalies in the space
region.
Using Tacops (you can take a screen shot of the region from the top-down
view) is a good way to figure out where the anomalies are located, their
distances and relation to each other etc.

Now that you know the name of the space region, the planet and the jump
anomalies, you can use them to define the start locations of your units.

The following examples use variations and script directives

e.g #1

[dynamic]
terran military,,f1,bcruzmk2.3d
[ai]
.f1,100,100,100,100,100,100,0
start inactive near earthz^jmp-10 5000 jmp-02
stop
events 1
!beginl1

activate this
!startup

broadcast "I activated in Earth space region"
broadcast "I am 5km from jump point #10 facing jump point #2"

endevents

e.g #2

[dynamic]
terran military,,f1,bcruzmk2.3d
[ai]
.f1,100,100,100,100,100,100,0
start in earthz
stop
events 1
!beginl1

activate this
!startup

broadcast "I started in Earth space region at random location"
endevents

e.g #3

[dynamic]
terran military,,f1,bcruzmk2.3d
[ai]
.f1,100,100,100,100,100,100,0
start near marz^mars 150000 moon-phobos
stop

45

gbsIII_docs.txt 9/9/2005

events 1
!startup

broadcast "I started in Mars space region"
broadcast "I am 150km from the planet Mars and facing the Phobos moon"

endevents

Note also that in addition to using region names and anomalies within
them,
you can also use other objects that exist in the region. As long as they
exist, they can be used - and they can be any object (e.g. another ship,
cargo pod etc). This example uses a pre-existing station in orbit around
the planet Earth.

e.g #4

[dynamic]
terran military,,f1,bcruzmk2.3d
[ai]
.f1,100,100,100,100,100,100,0
start near earthz^galcomhq 50000 earth
stop
events 1
!startup

broadcast "I started in Earth space region"
broadcast "I am 50km from GALCOMHQ station and facing the planet Earth"

endevents

NOTE: You can also start the player in a space region by using the
SET_REGION
command. It takes the same parameters as START IN or START NEAR.

In this example, the player is starting at a random location in the Earth
space region.

e.g. set_region earthz

Q. HOW DO I OBTAIN THE PLANET REGION NAME AND ENTITIES FOR USE WITH SCRIPTS?
A. You can start objects in a space or planetary region. In the case of a

planet region, you must use the "START ON_PLANET" directive. But you need
to know the following "

(1) The name of the planet region

(2) The name of the mzone within the mzone

The PTEDEFS.INI file located in the PTE2 folder contains the list of all
mzones and scenes in the game world. You would need the PTEstudio tool
in order to view them without having to run the game. See below.

e.g.

.f1,100,100,100,100,100,100,0
start on_planet on_planet earth earth00[sbase] 175.86 51.14 0 180
stop
events 1
!startup

broadcast "I started on the Earth planet in the earth00[sbase] mzone"
broadcast "My X/Y locations within the mzone are 22.847,4.666"
broadcast "I am at zero altitude on ground heading South at 180
degrees"

endevents

46

gbsIII_docs.txt 9/9/2005

NOTE: You can also start the player on a planet by using the SET_REGION
command. It takes the same parameters as START ON_PLANET, except that it
takes the scene parameter as well.

In this example, the player is starting in the base_earth01 scene located
in the earth00[sbase] mzone on the Earth planet. This command can
also take relative X/Y/Z locations within the mzone.

e.g. set_region earth,earth00[sbase],base_earth01

==
4.1 TOOLS - PTESTUDIO SCENE VISUALIZER
==

This tool is used to view the mzones and scenes on planets in order to
obtain start location for scripts which take place on planets.

SETUP
=====

1. Copy ptestudio3.exe and ptestudio.ini files to your game install folder.
It will not work from ANYWHERE else!!

2. Create a shortcut with the desired parameters. See the ptestudio.txt for
more
info on valid
parameters

USAGE
=====

3. Start the program and go to FILE/SELECT PLANET/SCENE then scroll down to
near the end of the list and left-click on the Earth (planet) in the first
window,
then EARTH00[SBASE] (mzone) in the second window, BASE_EARTH01 (scene) and
click
on the GO TO SCENE button. Wait for it to load.

Once you are taken to the scene, you will be in the middle of the scene at
ground zero.

NOTE: That there usually is no model at the center of the scene location
because the
primary unit (e.g. a starbase) is scripted in order to have access to it at
script
level. This is because entities within a .3DG group file cannot be accessed
from
within a script.

1. Go to OPTIONS/LOCAL MAP to display the map of the area you are in.
You should see a Yellow rectangle. This defines the mzone limits. The White
box
inside are the scenes within the mzone. The Yellow line indicates your
location
and direction of view/travel.

2. Go to OPTIONS/STATS and you will see a bunch of info, including the
following
important ones

The entries you are interested in are:

47

gbsIII_docs.txt 9/9/2005

- planet : Earth
- region : terran/military
- mission zone : earth00[sbase],26,170
- mzone position : 176528.562500m,51721.531250m

Grab hold of paper and pen to write down the info you need from all this.

Unlike space based scripts which use an actor as a starting point, planet
based
scripts primarily require a planetary location based starting point.

So, assuming you wanted to create an IA scenario which takes place in an
mzone/scene above, you would need to know where to start the player and
any scripted actors you wish to create within your script. Here's what you
need to do:

1. Use the UP/DOWN/LEFT/RIGHT arrow keys to move to the desired location on
the map. It can be inside or outside the scene but it must be within an
mzone.
You can increase your traversal range using 0-9. When you reach the desired
spot,
stop.

2. Now note your current position and write it down e.g.

mzone position : 176256.812500m, 51397.625000m

3. Repeat steps 1-2 as often times as needed. You would need to do this
if you were starting actors at various locations within the mzone.

At this point you can exit the program and go back to scripting. Unless of
course you want to see exactly where this mzone is located. In which case,
go to OPTIONS/ZONE SELECTOR. The Red crosshair on the Zone Selector
map is your current location on the planet. This is also the same map yo
see in Tacops, though Tacops uses a more advanced version with a lot more
options.

If you have the local map displayed, you can right-click anywhere on the
Zone Selector, including inside the Yellow mission zone boxes and instantly
be warped there. You will then see where you are on the local map. Then you
can toggle off the Zone Selector and get a full view of the local area.
You can also right-click inside the Local Map in order to warp to a location
on the planet.

If you want to calculate the distance between two points e.g. you want some
hostiles to intercept a target from a certain range and you don't want them
to have to travel too far over boring landscape, then you would use the
marker.
To do this, press M and a flashing diamond marker will appear. Now move to
the location you want to measure the range to (you can either travel using
the keyboard as normal, or right-click to warp there). As you move (or when
warped to the location), the Marker Distance info will appear in the stats
display. So if it says 21347.207321m, then thats how far you are from the
marker. To cancel the marker, press SHIFT+M.

NOTE: That the program will always override the local time by default. As
such,
it will always be daytime on the map you are on. To change it and use the
actual
Time Of Day for the area you are on, go to ENVIRONMENT/CONTANT TOD
and toggle it.

48

gbsIII_docs.txt 9/9/2005

WARNING: If you move outside of the local scene, the position will display
NULL.
Thats normal and the mzone position co-ordinates will still be valid. But you
must
NOT move outside the mission zone. If you do and it goes NULL, you're in deep
trouble.

ALSO:

DO NOT!! mess around with the map editors in the Editor menu. If you do, you
will
most likely screw up the INI files and invalidate the game environment!!

THE SCRIPTING PART
==================

NOW that you have the info, you can now use them in your IA script.

Below is a script excerpt which uses this info to start the player. The
command
which uses these parameters is in bold letters. You can take a look at one of
sample scripts which uses these similar commands.

!init_player
set_race terran
set_caste insurgent
set_career elite_force_marine
set_region earth,earth00[sbase],base_earth01

If you go back to the info above, you will see that EARTH00[SBASE]
mzone is under Terran/Military control. As such, the Terran/Insurgent EFM
player
is being started in that mzone inside the BASE_EARTH01 scene on the planet
Earth.
In other words, smack in the middle of a hostile base.
>
Because the starting location for the player (in sp and mp) is determined by
the /wp tags within various objects, we don't need an actual starting
location.
The system knows to pick a waypoint within the scene and start our hero off
there.
But if you wanted to add an exact starting location, you could use this
format which
puts you at that exact location inside the mzone.

set_region earth,earth00[sbase],base_earth01,144.962,194.030,0,0

Below is an excerpt which uses more info to start an actor. Actors use the
on_planet
parameter of the start command and NOT the set_region command. However, both
use the
same values derived from the mzone.

.badguy1,100,100,100,100,100,100,0
start on_planet earth00[sbase] base_earth01 176.256 51.397 0 0
stop
events 1
!startup
broadcast "Ready to kickass and chew gum. But I'm all outta gum!"

endevents

You are probably wondering why the values for the X and Y start locations for

49

gbsIII_docs.txt 9/9/2005

this
actor are not the same as those you wrote down. This is because the co-
ordinate system
ranges are calculated differently in the game itself. All you need to do in
order to
arrive at valid numbers is to discard all numbers to the right of the decimal
point
and divide the numbers preceeding the decimal point by 1000 to obtain the
values
required by the game engine. In this case the recorded position of

176256.812500m, 51397.625000m

becomes

176.256,51.397

and the start location for your actor will be where you were on the map.

HOWEVER there are times when you need to use more precise values. After all,
if you
are creating a team of marines, you probably want them being meters instead
of
kilometers apart. In this regard, after you have actually converted the
values,
you would further adjust the numbers precisely. Below is an actor who are
merely
2 meters (along Y) apart from the first one above.

.badguy2,100,100,100,100,100,100,0
start on_planet earth00[sbase] base_earth01 176.254 51.397 0 0
stop
events 1
!startup
broadcast "Here, I have an extra pack"

endevents

Though this FAQ entry is not to teach you how to use a scripting command, let
me
explain the last two parameters used by this on_planet script command.

The Z component is only used for actors (e.g. crafts) who need to be started
in the air (though they can still be started on the groun). And if you're
thinking of doing this, be sure to be aware of the craft's capabilities
because
if you script a fast mover at something like 1000 meters above the ground,
e.g. 166.723 11.912 100 0, it will drop like a rock when activated and hit
the ground before it has time to start its engines. In this case, you want
its start altitude to either be zero (it will take off just fine) or at
least 1000m above the ground.

The heading component (specified in degrees) e.g. 166.723 11.912 0 90
is rarely used because actors will turn toward their target. This parameter
is included for convenience only. Who knows, you might want to create an
actor who is looking in one direction, while someone is about to cap his
ass from the rear.

==
4.2 TOOLS - BCSTUDIO MODEL VIEWER
==

This tool is used to view the 3D models and characters in the game

50

gbsIII_docs.txt 9/9/2005

SETUP
=====

1. Copy bcstudio.exe and bcstudio.ini files to your game install folder.
It will not work from ANYWHERE else!!

2. Create a shortcut with the desired parameters. See the bcstudio.txt
for more info on valid parameters

USAGE
=====

Start the program and use File/Open to load a .3D file from the MODELS
folder.

=== THE END ===

51

